Chromatic numbers and products

نویسندگان

  • Dwight Duffus
  • Norbert Sauer
چکیده

Let Λ(n) be the smallest number so that there are two n chromatic graphs whose product has chromatic number Λ(n). Under the assumption that a certain sharper result than one obtained by Duffus, Sands and Woodrow [1] holds we will prove that Λ(n) ≥ n/2. MR Subject Classifications [2000]: 05C15 Keyworks: chromatic number, graph product, Hedeniemi conjecture

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Multiplicative Zagreb Indices with Respect to Chromatic and Clique Numbers

The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors such that G can be colored with these colors in such a way that no two adjacent vertices have the same color. A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G. The Turán graph Tn(k) is a complete k-partite graph whose partition...

متن کامل

The chromatic numbers of graph bundles over cycles

Graph bundles generalize the notion of covering graphs and products of graphs. The chromatic numbers of product bundles with respect to the Cartesian, strong and tensor product whose base and fiber are cycles are determined.

متن کامل

Acyclic Colorings of Products of Cycles

An acyclic coloring of a graph G is a proper coloring of the vertex set of G such that G contains no bichromatic cycles. The acyclic chromatic number of a graph G is the minimum number k such that G has an acyclic coloring with k colors. In this paper, acyclic colorings of products of paths and cycles are considered. We determine the acyclic chromatic numbers of three such products: grid graphs...

متن کامل

The fractional chromatic number of Zykov products of graphs

Zykov designed one of the oldest known family of triangle-free graphs with arbitrarily high chromatic number. We determine the fractional chromatic number of the Zykov product of a family of graphs. As a corollary, we deduce that the fractional chromatic numbers of the Zykov graphs satisfy the same recurrence relation as those of the Mycielski graphs, that is an+1 = an + 1 an . This solves a co...

متن کامل

Incidence dominating numbers of graphs

In this paper, the concept of incidence domination number of graphs  is introduced and the incidence dominating set and  the incidence domination number  of some particular graphs such as  paths, cycles, wheels, complete graphs and stars are studied.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 300  شماره 

صفحات  -

تاریخ انتشار 2005